Illustrative examples of analysis and modeling of impurity erosion and redeposition experiments in DIII-D with integrated PMI models

Outline

- Modeling of W ring experiments in DIII-D:
 - C and W erosion/redeposition in DIII-D divertor can be consistently modeled using a Monte-Carlo impurity transport code and sheath & material reduced models*:
 - → Experimental and theoretical framework in DIII-D to validate and use impurity transport code in Tokamak conditions (GITR)
 - Accurate modeling of C deposition on W may however require a more detailed material model:
 - → Experimental framework in DIII-D to validate integrated models of surface evolution and roughness, material erosion and impurity transport
- Modeling W redeposition with ion-gyro sheath:
 - reduced model vs PIC model?
 - → Example of experimental framework in DIII-D to benchmark PIC simulations with ITER relevant physics

^{*} Presented at the 23rd international conference on Plasma Surface Interactions in Controlled Fusion Devices

Outline

- Modeling of W ring experiments in DIII-D:
 - C and W erosion/redeposition in DIII-D divertor can be consistently modeled using a Monte-Carlo impurity transport code and sheath & material reduced models*:
 - → Experimental and theoretical framework in DIII-D to validate and use impurity transport code in Tokamak conditions (GITR)
 - Accurate modeling of C deposition on W may however require a more detailed material model:
 - → Experimental framework in DIII-D to validate integrated models of surface evolution and roughness, material erosion and impurity transport
- Modeling W redeposition with ion-gyro sheath:
 - reduced model vs PIC model?
 - → Example of experimental framework in DIII-D to benchmark PIC simulations with ITER relevant physics

Modeling of C and W erosion/redeposition in DIII-D divertor

Introduction

- Why modeling W net erosion is challenging?
- Measurement of W gross erosion and outboard deposition in DIII-D lower divertor with a toroidally symmetric W source

- Modeling and analysis of W gross erosion mechanism
 - W sputtering results from synergetic effects between impurity erosion, implantation, redeposition and transport processes
- Modeling and analysis of outboard W deposition mechanism
 - W net erosion may be inferred from W deposition measurements

Modeling of C and W erosion/redeposition in DIII-D divertor

Introduction

- Why modeling W net erosion is challenging?
- Measurement of W gross erosion and outboard deposition in DIII-D lower divertor with a toroidally symmetric W source

- Modeling and analysis of W gross erosion mechanism
 - W sputtering results from synergetic effects between impurity erosion, implantation, redeposition and transport processes
- Modeling and analysis of outboard W deposition mechanism
 - W net erosion may be inferred from W deposition measurements

W divertor in ITER: understanding and predicting W net erosion & transport

W net erosion \approx gross erosion x (1- prompt redeposition) x (1 - non-prompt local redeposition) & transport

W divertor in ITER: understanding and predicting W net erosion & transport

W net erosion \approx gross erosion x (1- prompt redeposition) x (1 – non-prompt local redeposition) & transport

- W net erosion governed by various complex physics processes
 - e.g. multiple ionizations of W within the ion gyro-sheath \rightarrow 3D model for W prompt redeposition

W divertor in ITER: understanding and predicting W net erosion & transport

W net erosion \approx gross erosion x (1- prompt redeposition) x (1 – non-prompt local redeposition) & transport

```
Impurity fluxes + sputtering physics + sheath physics + ionization physics + transport physics + transport
```

- W net erosion governed by various complex physics processes
 - e.g. multiple ionizations of W within the ion gyro-sheath \rightarrow 3D model for W prompt redeposition

W divertor in ITER: understanding and predicting W net erosion & transport

W net erosion & gross erosion x (1- prompt redeposition) x (1 - non-prompt local redeposition) & transport

Impurity fluxes + sputtering physics + sheath physics + ionization physics + transport physics + transport physics + transport physics

In-situ exp. measurements of W gross erosion

WI (400.9 nm) +SXB

[AbramsNF2016,DingNF2017,HakolaPS2016]

Redeposition) x (1 - non-prompt local redeposition) x (1 - non-prompt local redeposition)

Post-mortem analysis of W deposition on PFCs [RudakovPS2014]

- W net erosion governed by various complex physics processes
 - e.g. multiple ionizations of W within the ion gyro-sheath \rightarrow 3D model for W prompt redeposition
- Validation of physics models for W net erosion is challenging...

W divertor in ITER: understanding and predicting W net erosion & transport

W net erosion & gross erosion x (1- prompt redeposition) x (1 - non-prompt local redeposition)

& transport

Impurity fluxes + sputtering physics + sheath physics + ionization physics + transport physics + transport physics

In-situ exp. measurements of W gross erosion

WI (400.9 nm) +SXB

[AbramsNF2016,DingNF2017,HakqlaPS2016]

Post-mortem analysis of W deposition on PFCs

[RudakovPS2014]

- W net erosion governed by various complex physics processes
 - e.g. multiple ionizations of W within the ion gyro-sheath \rightarrow 3D model for W prompt redeposition
- Validation of physics models for W net erosion is challenging...

Can dedicated experiments with <u>localized toroidally symmetric W source</u> in divertor improve understanding of mechanisms governing W net erosion and transport?

W metal ring experiments in DIII-D: introducing a localized and toroidally symmetric W source in the DIII-D lower divertor

- W rings in DIII-D lower outer divertor:
 - localized and toroidally symmetric W source
- 25 repeated attached L-mode shots in reverse Bt-field with outer strike point on the outboard W ring

$\Gamma_{\rm W}^{\rm ero}$ ~0.1% $\Gamma_{\rm D}$ on W ring and net deposition of C on W near the separatrix

In-situ measurement of W gross erosion $\sim 0.1\%$ Γ_D , comparable to fraction in experiments with localized W source [DingNF2016]

Outboard W deposition $\sim 1\% \Gamma_{W}^{ero}$ measured at 3.5cm from W outer edge

In-situ measurement of W gross erosion $\sim 0.1\% \, \Gamma_D$, comparable to fraction in experiments with localized W source [DingNF2016]

Inter-shots measurements of W outboard deposition

•
$$\Gamma_W^{dep} \sim 5 \times 10^{13} \text{ cm}^{-2} \text{ s}^{-1} \sim 1\% \Gamma_W^{ero}$$

[WamplerPS2017]

Outboard W deposition $\sim 1\% \Gamma_{W}^{ero}$ measured at 3.5cm from W outer edge

In-situ measurement of W gross erosion $\sim 0.1\%$ Γ_D , comparable to fraction in experiments with localized W source [DingNF2016]

- Inter-shots measurements of W outboard deposition
 - $\Gamma_{\rm W}^{\rm dep} \sim 5 \times 10^{13} \ {\rm cm}^{-2} \ {\rm s}^{-1} \sim 1\% \ \Gamma_{\rm W}^{\rm ero}$

[WamplerPS2017]

very localized W deposition at 3.5cm from W outer edge

Modeling of C and W erosion/redeposition in DIII-D divertor

Introduction

- Why modeling W net erosion is challenging?
- Measurement of W gross erosion and outboard deposition in DIII-D lower divertor with a toroidally symmetric W source

- Modeling and analysis of W gross erosion mechanism
 - W sputtering results from synergetic effects between impurity erosion, implantation, redeposition and transport processes
- Modeling and analysis of outboard W deposition mechanism
 - W net erosion may be inferred from W deposition measurements

W gross erosion well reproduced with ERO-D3D and mainly due to sputtering by C impurities

- Modeling of W + C local erosion, redeposition and transport with ERO-D3D (~ERO [KirschnerNF2000]):
 - Fully parallelized Monte-Carlo solver (trace approximation)
 - 3D + ion gyro-sheath + collisions with D + ExB & ∇B × B drifts
 - C+W homogenous mixed-material model [KriegerJNM1993]
- Plasma conditions with ExB drifts reconstructed with OEDGE (OSM) [Stangeby2001]
- Carbon source from main chamber wall + inner divertor calculated with UEDGE (2D fluid code) [Rognlien2000]

W gross erosion well reproduced with ERO-D3D and mainly due to sputtering by C impurities

- Modeling of W + C local erosion, redeposition and transport with ERO-D3D (~ERO [KirschnerNF2000]):
 - Fully parallelized Monte-Carlo solver (trace approximation)
 - 3D + ion gyro-sheath + collisions with D + ExB & ∇B × B drifts
 - C+W homogenous mixed-material model [KriegerJNM1993]
- Plasma conditions with ExB drifts reconstructed with OEDGE (OSM) [Stangeby2001]
- Carbon source from main chamber wall + inner divertor calculated with UEDGE (2D fluid code) [Rognlien2000]
- W gross erosion well reproduced with ERO-D3D when including C source from main chamber wall and inner divertor

W gross erosion well reproduced with ERO-D3D and mainly due to sputtering by C impurities

- Modeling of W + C local erosion, redeposition and transport with ERO-D3D (~ERO [KirschnerNF2000]):
 - Fully parallelized Monte-Carlo solver (trace approximation)
 - 3D + ion gyro-sheath + collisions with D + ExB & ∇B × B drifts
 - C+W homogenous mixed-material model [KriegerJNM1993]
- Plasma conditions with ExB drifts reconstructed with OEDGE (OSM) [Stangeby2001]
- Carbon source from main chamber wall + inner divertor calculated with UEDGE (2D fluid code) [Rognlien2000]
- W gross erosion well reproduced with ERO-D3D when including C source from main chamber wall and inner divertor
- W gross erosion mainly due to W sputtering by C

Influx of C from inner divertor and main chamber wall on W is localized near the separatrix

C influx at the outer divertor target without C source from outer divertor

- Small C influx on W in the common flux region (CFR): ~0.1% $\Gamma_{\! D}$
- Large C influx on W near the separatrix: $\sim 1\% \Gamma_{\rm D}$

Influx of C from inner divertor and main chamber wall on W is localized near the separatrix

- Small C influx on W in the common flux region (CFR): ~0.1% Γ_D
- Large C influx on W near the separatrix: $\sim 1\%~\Gamma_D$
- W gross erosion mainly occurs in the common flux region: how C migrate on W from the separatrix into the common flux region?

- Downward poloidal ExB drift in PFR/Upward poloidal ExB drift in the CFR
- Outward radial ExB drift in the CFR

- Downward poloidal ExB drift in PFR/Upward poloidal ExB drift in the CFR
- Outward radial ExB drift in the CFR
- Outward radial migration of C above W due to interplay between radial and poloidal ExB drifts

- Downward poloidal ExB drift in PFR/Upward poloidal ExB drift in the CFR
- Outward radial ExB drift in the CFR
- Outward radial migration of C above W due to interplay between radial and poloidal ExB drifts

deposition of C (R [cm])

 C content above W predicted with ERO-D3D in agreement with experimental observations

- Downward poloidal ExB drift in PFR/Upward poloidal ExB drift in the CFR
- Outward radial ExB drift in the CFR
- Outward radial migration of C above W due to interplay between radial and poloidal ExB drifts

- Downward poloidal ExB drift in PFR/Upward poloidal ExB drift in the CFR
- Outward radial ExB drift in the CFR
- Outward radial migration of C above W due to interplay between radial and poloidal ExB drifts
- C content above W predicted with ERO-D3D in agreement with experimental observations

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ $_{\Gamma^{er}_{C}}$

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ $^{\Gamma^{er}_{C}}$

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

C erosion/redeposition (ERO-D3D)

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ Γ^{ero}_{C}

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ $_{\Gamma^{er}_{C}}$

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

C erosion/redeposition (ERO-D3D)

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ Γ^{ero}_{C}

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

deposition of C (R [cm])

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ Γ^{ero}_{C}

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

C erosion/redeposition (ERO-D3D)

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ $_{\Gamma^{er}_{C}}$

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

C erosion/redeposition (ERO-D3D)

147
146

145
2 144

O 143

0 142

0 141

140

146

142

deposition of C (R [cm])

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ $_{\Gamma^{er}_{C}}$

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

C erosion/redeposition (ERO-D3D)

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ Γ^{ero}_{C}

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

C erosion/redeposition (ERO-D3D)

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ Γ^{ero}_{C}

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

C erosion/redeposition (ERO-D3D)

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ $_{\Gamma^{er}_{C}}$

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ $_{\Gamma^{er}_{C}}$

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

Implantation of C in W and large C redeposition onto W induces large C flux on W (C "recycling")

C erosion/redeposition (ERO-D3D) 147 146 [cm]) 145 144 10^{-3} 143 source 42 142 146 deposition of C (R [cm])

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ $_{\Gamma^{er}_{C}}$

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

Implantation of C in W and large C redeposition onto W induces large C flux on W (C "recycling")

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ Γ^{ero}_{C}

$$\Gamma_{C}^{influx} = \frac{\Gamma_{C}^{i+w}}{1-f_{redep}} > \Gamma_{C}^{i+w}$$

- Implantation of C in W and large C redeposition onto W induces large C flux on W (C "recycling")
- W gross erosion close to equilibrium at t~1s, compatible with vs 5s DIII-D plasma

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ Γ^{ero}_{C}

$$\Gamma_{\rm C}^{\rm influx} = \frac{\Gamma_{\rm C}^{\rm i+w}}{1 - f_{\rm redep}} > \Gamma_{\rm C}^{\rm i+w}$$

- Implantation of C in W and large C redeposition onto W induces large C flux on W (C "recycling")
- W gross erosion close to equilibrium at $t\sim 1s$, compatible with vs 5s DIII-D plasma

146

142

deposition of C (R [cm])

C erosion/redeposition (ERO-D3D)

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ Γ^{ero}_{C}

$$\Gamma_{C}^{influx} = \frac{\Gamma_{C}^{i+w}}{1-f_{redep}} > \Gamma_{C}^{i+w}$$

- Implantation of C in W and large C redeposition onto W induces large C flux on W (C "recycling")
- W gross erosion close to equilibrium at t~1s, compatible with 5s DIII-D plasma

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ $^{\Gamma^{ero}_{C}}$

$$\Gamma_{C}^{influx} = \frac{\Gamma_{C}^{i+w}}{1-f_{redep}} > \Gamma_{C}^{i+w}$$

- Implantation of C in W and large C redeposition onto W induces large C flux on W (C "recycling")
- W gross erosion close to equilibrium at t~1s, compatible with vs 5s DIII-D plasma

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ $^{\Gamma^{ero}_{C}}$

$$\Gamma_{C}^{influx} = \frac{\Gamma_{C}^{i+w}}{1-f_{redep}} > \Gamma_{C}^{i+w}$$

- Implantation of C in W and large C redeposition onto W induces large C flux on W (C "recycling")
- W gross erosion close to equilibrium at t~1s, compatible with vs 5s DIII-D plasma

C erosion/redeposition (ERO-D3D)

• C implantation in W described by the homogenous mixed material model in ERO-D3D $_{\Gamma^{i+w}}$ $^{\Gamma^{er}_{C}}$

$$\Gamma_{C}^{influx} = \frac{\Gamma_{C}^{i+w}}{1-f_{redep}} > \Gamma_{C}^{i+w}$$

- Implantation of C in W and large C redeposition onto W induces large C flux on W (C "recycling")
- W gross erosion close to equilibrium at $t\sim 1s$, compatible with vs 5s DIII-D plasma
- Is this model actually robust against uncertainties?

W gross erosion weakly vary with C source due to the interplay between W sputtering by C and C implantation in W

- Weak dependency of W gross erosion on C source due to interplay between C implantation in W and W sputtering by C: model robust against uncertainties in C source!

$$- \text{ Within the homogenous mixed material model:} \\ < \frac{\Gamma_{W}^{ero}}{\Gamma_{D}} > \\ < \frac{\Gamma_{C}^{w+i}}{\Gamma_{D}} > \\ < \frac{$$

W gross erosion weakly vary with C source due to the interplay between W sputtering by C and C implantation in W

- Weak dependency of W gross erosion on C source due to interplay between C implantation in W and W sputtering by C: model robust against uncertainties in C source!

$$- \text{ Within the homogenous mixed material model:} \\ < \frac{\Gamma_{\text{W}}^{\text{ero}}}{\Gamma_{\text{D}}} > \\ < \frac{\Gamma_{\text{C}}^{\text{W}+i}}{\Gamma_{\text{D}}} > \\ < \frac{\Gamma_{\text{C}}^{\text{W}+i}}{\Gamma_{\text{D}}$$

W gross erosion weakly vary with C source due to the interplay between W sputtering by C and C implantation in W

- Weak dependency of W gross erosion on C source due to interplay between C implantation in W and W sputtering by C: model robust against uncertainties in C source!
 - Within the homogenous mixed material model:

$$<\frac{\Gamma_{\text{W}}^{\text{ero}}}{\Gamma_{\text{D}}}> \sim \left(1 - \frac{<\frac{\Gamma_{\text{C}}^{\text{W}+i}}{\Gamma_{\text{D}}}>}{<\frac{\Gamma_{\text{C}}^{\text{W}+i}}{\Gamma_{\text{D}}}>Y_{\text{C}\rightarrow\text{C}} + Y_{\text{D}\rightarrow\text{C}}(1 - f_{\text{redep}})}\right) \times \left(Y_{\text{D}\rightarrow\text{W}} + \frac{Y_{\text{C}\rightarrow\text{C}}}{1 - f_{\text{redep}}} < \frac{\Gamma_{\text{C}}^{\text{W}+i}}{\Gamma_{\text{D}}}>\right) \qquad 0$$

- C reflection on W strongly enhances W erosion:
 - Reflection of C on W = sputtering of W + instantaneous re-erosion
 - $R_{C \to W} \sim 0.7 0.8 > Y_{D \to C}$, $Y_{C \to C}$

W gross erosion weakly vary with C source due to the interplay between W sputtering by C and C implantation in W

- Weak dependency of W gross erosion on C source due to interplay between C implantation in W and W sputtering by C: model robust against uncertainties in C source!
 - Within the homogenous mixed material model:

$$<\frac{\Gamma_{\rm W}^{\rm ero}}{\Gamma_{\rm D}}> \sim \left(1 - \frac{<\frac{\Gamma_{\rm C}^{\rm W+i}}{\Gamma_{\rm D}}>}{<\frac{\Gamma_{\rm C}^{\rm W+i}}{\Gamma_{\rm D}}>Y_{\rm C\rightarrow C} + Y_{\rm D\rightarrow C}(1-f_{\rm redep})}\right) \times \left(Y_{\rm D\rightarrow W} + \frac{Y_{\rm C\rightarrow C}}{1-f_{\rm redep}} < \frac{\Gamma_{\rm C}^{\rm W+i}}{\Gamma_{\rm D}}>\right) \qquad 0 \qquad --\text{ analytic}$$

- C reflection on W strongly enhances W erosion:
 - Reflection of C on W = sputtering of W + instantaneous re-erosion
 - $R_{C \to W} \sim 0.7 0.8 > Y_{D \to C}$, $Y_{C \to C}$

W gross erosion induced by large C flux on W resulting from interplay between ExB drifts, C implantation/redeposition & reflection on W

Modeling of C and W erosion/redeposition in DIII-D divertor

Introduction

- Why modeling W net erosion is challenging?
- Measurement of W gross erosion and outboard deposition in DIII-D lower divertor with a toroidally symmetric W source

- Modeling and analysis of W gross erosion mechanism
 - W sputtering results from synergetic effects between impurity erosion, implantation, redeposition and transport processes
- Modeling and analysis of outboard W deposition mechanism
 - W net erosion may be inferred from W deposition measurements

Outboard W deposition due to interplay between poloidal and radial ExB drifts and may be used to quantify W net erosion

- Experiment: localized W deposition $\Gamma_W^{dep}{\sim}0.01{\times}\Gamma_W^{ero}$ at 3.5cm from W outer edge
- Outboard W deposition qualitatively reproduced with ERO-D3D

Outboard W deposition due to interplay between poloidal and radial ExB drifts and may be used to quantify W net erosion

- Experiment: localized W deposition $\Gamma_W^{dep}{\sim}0.01{\times}\Gamma_W^{ero}$ at 3.5cm from W outer edge
- Outboard W deposition qualitatively reproduced with ERO-D3D
 - Radial W migration due interplay between <u>outward</u> radial ExB drift and <u>upward</u> poloidal ExB drift (balance friction with D)
 - Most of W not redeposited locally are deposited outboard

R [cm]

160

Outboard W deposition due to interplay between poloidal and radial ExB drifts and may be used to quantify W net erosion

- Experiment: localized W deposition $\Gamma_W^{dep}{\sim}0.01{\times}\Gamma_W^{ero}$ at 3.5cm from W outer edge
- Outboard W deposition qualitatively reproduced with ERO-D3D
 - Radial W migration due interplay between <u>outward</u> radial ExB drift and <u>upward</u> poloidal ExB drift (balance friction with D)
 - Most of W not redeposited locally are deposited outboard
- Measurement of W outboard deposition may help to quantify W net erosion...
 - But accurate quantitative modeling difficult due to uncertainties in plasma conditions (e.g. drifts near targets) and W transport (e.g. prompt deposition)

Modeling of C and W erosion/redeposition in DIII-D divertor: conclusions

 Modeling of W erosion by low-Z impurities and W transport in divertor must include various physical mechanisms (mixed-material effects, ExB drifts, "global" source of low-Z impurity, reflection) and their synergetic effects to provide full consistency with plasma background conditions

Modeling of C and W erosion/redeposition in DIII-D divertor: conclusions

- Modeling of W erosion by low-Z impurities and W transport in divertor must include various physical mechanisms (mixed-material effects, ExB drifts, "global" source of low-Z impurity, reflection) and their synergetic effects to provide full consistency with plasma background conditions
- Reduced model of material erosion with mixed-material (C and W described with the homogenous mixed-material model) sufficiently accurate to model material erosion:
- → It might be very beneficial to implement both reduced models (e.g. HMM) and advanced models of material erosion (e.g. SDTRIM.SP) in impurity transport code (e.g. GITR)
- Ideal framework to do numerical validations of GITR (e.g. against ERO and DIVIMP)
 and apply GITR to model impurity transport in Tokamak experiments

Outline

- Modeling of W ring experiments in DIII-D:
 - C and W erosion/redeposition in DIII-D divertor can be consistently modeled using a Monte-Carlo impurity transport code and sheath & material reduced models:
 - → Experimental and theoretical framework in DIII-D to validate and use impurity transport code in Tokamak conditions (GITR)
 - Accurate modeling of C deposition on W may however require a more detailed material model:
 - → Experimental framework in DIII-D to validate integrated models of surface evolution and roughness, material erosion and impurity transport
- Modeling W redeposition with ion-gyro sheath:
 - reduced model vs PIC model?
 - → Example of experimental framework in DIII-D to benchmark PIC simulations with ITER relevant physics

Carbon deposition observed on W at the separatrix location

C deposition strip on W near the strike point

- Net deposition of C on W ring at the separatrix location
- Net deposition of C roughly predicted with ERO-D3D in the private flux region but not at the separatrix:

- Homogenous mixed-material model cannot provide accurate modeling of C deposition on W [DrostePPCF2010]
- Surface roughness not included in the HMM, but may strongly affect C deposition on W [KreterPPCF2008]
- Modeling of C deposition on W observed during the metal ring campaign in DIII-D might be an good exercise to demonstrate the use of coupled models developed within the PSI-PsiDAC project (here Fractal-TriDyn+GITR)

Outline

- Modeling of W ring experiments in DIII-D:
 - C and W erosion/redeposition in DIII-D divertor can be consistently modeled using a Monte-Carlo impurity transport code and sheath & material reduced models:
 - → Experimental and theoretical framework in DIII-D to validate and use impurity transport code in Tokamak conditions (GITR)
 - Accurate modeling of C deposition on W may however require a more detailed material model:
 - → Experimental framework in DIII-D to validate integrated models of surface evolution and roughness, material erosion and impurity transport
- Modeling W redeposition with ion-gyro sheath:
 - reduced model vs PIC model?
 - → Example of experimental framework in DIII-D to benchmark PIC simulations with ITER relevant physics

Large W prompt deposition due to fast ionization of W within the ion-gyro sheath

- Fast ionization of W ($\tau_{iz} \omega_c \ll 1$):
 - Large W prompt redeposition & W ionization within the sheath
- Sheath \approx ion gyro-sheath at grazing magnetic field incidence [RyutovCPP1996] ($\lambda_{sheath} \sim \rho_i$)
- Recent kinetic simulations [CoulettePPCF2016,StangebyNF2012] show $\lambda_{sheath} \approx 5\rho_i$... but at B=10T
- Large effects of electron density decay in the sheath on W ionization and prompt redeposition (see e.g. [DingNF2016])

$$n_e^{sheath}(\hat{z}) = n_0^{plasma} e^{\hat{\phi}(\hat{z})}$$

- W prompt redeposition mainly governed by multiple ionizations of W in sheath
- Critical uncertainties for W prompt redeposition: ionization rates of W. "First-principle" model needed for W^{0+,1+,2+,3+,4+,5+} ionization (see e.g. [SmythPRA18])

W prompt deposition governed by W ionization rates and sheath scale length and can be described using a sheath reduced model

- Weak dependency of W prompt deposition on exact potential profile in the sheath:
 - $f_{iz}(\hat{z}) \sim \int_0^{\hat{v}_c} e^{-\frac{\int_0^{\hat{z}} e^{\hat{\phi}(\tilde{z})} d\tilde{z}}{\overline{\tau}_{iz} \hat{v}_z}} f(\hat{v}_z) d\hat{v}_z$
 - Allow complete analytical solution for W trajectory in the sheath(convenient for code validation with auto-adjusted timestep in the sheath)

- Sheath length scale (but not the shape of the potential profile) has non-negligible effects on W prompt redeposition
- Can sheath length scale be well estimated in Tokamak divertor?
- If yes, PIC model of the sheath is not always necessary and reduced sheath model might be sufficient, e.g. for simple geometry and steady plasma conditions (≠ ELMs)

But structure of the sheath may be more complex when considering real PFC geometry, e.g. near W tile edges in ITER W divertor ...

- PFC may exhibit complex geometrical features, e.g. W tile castellation and gap in ITER W divertor, which may strongly affect sheath and plasma conditions, and resulting PMI - erosion, melting,...
 - See for example R. Dejarnac talk¹ at PSI
- DiMES biasing experiments performed and modeled by R. Ding² at DIII-D exhibit similar geometrical effects on plasma:
 - Modification of the sheath due to gap between biased probe and DiMES head
 - Modification of the sheath due to biasing
 - Modeling of sheath and erosion with PIC and erosion/redeposition codes (here SPICE2/ERO)
- DiMES biasing experiments in DIII-D may provide an excellent framework to benchmark integrated PIC/impurity simulations in realistic Tokamak conditions with ITER relevant PMI physics

R. Dejarnac, Physics of toroidal gap heat loading on castellated plasma-facing components, PSI 2018
 R. Ding, Model validation on DIII-D experiments towards understanding of high-Z material erosion and migration in a mixed materials environment, PSI 2018

Conclusions

- Experimental and theoretical framework in DIII-D to:
 - validate and use impurity transport code in Tokamak conditions (GITR)
 - to validate integrated models of surface evolution and roughness, material erosion and impurity transport (Fractal-TriDyn+GITR)
 - to benchmark PIC simulations with ITER relevant physics (hPIC+GITR)

 Well diagnosed and controlled plasma conditions and versality of PFC material in DIII-D divertor provide an ideal benchmark to demonstrate the use of integrated/coupled complex PMI models developed in the PSI-PsiDAC project to analyze and model PMI physics in Tokamak experiments